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1ST LET’S GO BACK
TO PHILOSOPHY

OF SCIENCE
Just because we (computer scientists) give our own definitions, 

which adds confusion - It’s getting cold… isn’t it?



THE SCIENTIFIC METHOD
https://i0.wp.com/peegel.info/wp-content/uploads/2017/10/scientific_method.png

Traditionally we have 2 main 
branches of the scientific 
method:
1 – Deductive branch
Mathematics and formal logic 
2 – Empirical branch
Statistical analysis of 
controlled experiments

Hope for a 3rd & 4th branches
3 – Large Scale Simulation
4 – Data intensive & data 
driven computer Science

But we do not meet the 
standards of Branch 1 & 2… 

https://i0.wp.com/peegel.info/wp-content/uploads/2017/10/


REPRODUCIBILITY & CORROBORATION

 Many of us know the important work of Karl Popper (philosopher of sciences) 
in modeling and simulation. Karl Popper is generally regarded as one of the greatest 
philosophers of science of the 20th century. 

 The criterion of reproducibility is one of the conditions on which Popper distinguishes 
between the scientific or pseudo-scientific character of a study.

 Scientific conclusions can only be drawn from a well observed and described “event”,
which has appeared several times, observed by different people and/or studies.

 Science moves forward by corroboration when researchers verify/reproduc each other’s 
data. This criterion eliminates random effects that distort the results as well as errors
in judgment or manipulations by scientists.



DISTINGUISH BETWEEN

REPRODUCIBILITY & REPEATABILITY

 There is a growing alarm of results that have been published 
but that cannot be reproduced. This means waste of time 
pursuing false leads…

 A study of top scientific research in UK (REF) showed that only 11% 
of medical studies where reproducible. (First page of “The Guardian”).

 Reproducibility (need changes) means observing the same trend, getting the same 
scientific conclusion (with different infrastructures, methods, experiments…)

 Repeatability means you have the same execution trace and the same results (up 
to bitwise identical results)



MANY DOMAINS ARE IMPACTED

‘CREDIBILITY & REPRODUCIBILITY CRISIS…’



REPRODUCIBLE SCIENCE
IS GOOD

BUT REPEATED COMPUTER
SCIENCE IS ALSO NEEDED

TO DEBUG!



WHY DO WE (ALSO) NEED REPEATABILITY ?

 If you don’t have repeatability, how do you debug ? 
How do we repeat/reproduce the events observed in simulations ?
(confirmation of Higgs discovery, etc…)

 In Digital Computer Science we are used to deterministic computing 
and we expect « repeatability » of computer experiments. 
Computer debugging and program setup is based on repeatability!

 Even when we use pseudo-random numbers for stochastic models, we are running 
deterministic experiments since pseudo-random number generators have been carefully 
designed to be repeatable (though some computer scientist often use the “reproducible” 
term…).

 In the context of a Biological or Physical experiment, repeatability measures the variation in 
measurements taken by a single instrument or person under the same conditions, while 
reproducibility measures whether an entire study or experiment can be reproduced in its 
entirety – by the same research team or by another team.



HERE ARE SOME

TECHNICAL REASONS

FOR HPC NUMERICAL

REPEATABILITY

FAILURES

… 
IN ADDITION

TO POSSIBLE

INDIVIDUAL ERRORS

AND MISCONDUCTS…

• Round off errors

• Order of floating point operations (dynamic execution / out of order)

• …

Floating point…

• Number of processors, Networking Interconnect, devices and latency

• Difference between architectures ( regular processors, vs 
accelerators,…) – Hybrid computing.

• Processor implementation or design bugs

• Silent/soft errors

• …

Hardware

• Operating systems, compilers, 

• Libraries, dependencies and software stack versions

• Parallelization techniques

• Virtual machines and containers (rare in HPC > bare metal)

• …

Software 



ZOOM IN SOME TECHNICAL REASONS LIKE « OUT OF ORDER EXECUTION »
OF FLOATING POINT INSTRUCTIONS

 Out-of-order execution is also known as dynamic execution. 
Most modern high-performance microprocessors optimize the execution of instructions 
based on the availability of input data to avoid delays. 

 The original order of instructions is now not always respected !

 The microprocessor avoids having parts of its internal 
computing units being idle by processing the next instructions 
which are able to run immediately and “independently”.

 It is the equivalent of the software dynamic recompilation 
which enables improving instruction scheduling.

 It may impact floating point operations 
floating point arithmetic is not associative (for + & * ) 
ex: a + (b + c) != (a + b) + c

See Intel – 2014 https://www.mpcdf.mpg.de/services/computing/software/languages-1/FP_accuracy_reproducibility.pdf



ANOTHER EXAMPLE OF MICROPROCESSOR DESIGN ERRORS

AND MISS-BEHAVIORS > HYPER-THREADING, MELTDOWN, SPECTRE,…
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RELIABILITY & HPC… SILENT ERRORS & SOFT ERRORS… 

1. Change the system state by ‘external forces’
• Alpha particles
• Cosmic rays (High Energy Particles from space)
• Thermal neutrons
• Variation in voltage, temperature, etc.

2. They are at the origin of ECC…to avoids bits flips in memory cells
• There is also a rising of soft errors in arithmetic units !!!
• The more we size down the more this problem increases.
• Chip manufacturers spend money and silicon space to avoid 

this kind of errors:
 Samsung, GlobalFoundries, and IBM introduced the world's first 5nm chip 

with GAAFET transistors, GAA (gate-all-around) stacked nano-sheet transistors.

3. Soft errors are difficult to detect and almost impossible to reproduce
Using spare time of Supercomputers to check ? Use of Fault injection framework…



RUN TO RUN REPEATABILITY ERRORS

From Prof. Dr. T. Ludwig – DKRZ Director
- ISC Supercomputing
Frankfurt – June 2019 
See also the work of Francois Thomas –
Optimization of weather applications 
on Power and x86 architectures 
(Toulouse CERFACS) 



WE DON’T HAVE EASY SOLUTIONS – BUT TOOLS ARE COMING…

Workflow Tracking & Resarch Environment : 
Sumatra, CoRR (NIST), CDE, Kepler, Chameleon, Galaxy, Tavera, Pegasus, Jupyter notebook, 
GenePattern,…

Dissemination Platforms: 
IPOL, ResearchCompendia.org, Madagascar, MLOSS.org, CoRR (NIST), RunMyCode.org, 
nanoHUB.org, thedatahub.org, Open Science Framework, Scientific Open Data,…

Embedded publishing : 
Sweave, knitR, ReScience, SHARE, Verifiable Computational Research, SOLE, Collage Authoring 
Environment.

Evolutions of containers like Singularity for HPC 
Efficient binary containers (ready for ARM processors…)



TOWARDS A METHOD
FOR REPEATABLE

PARALLEL
STOCHASTIC
SIMULATIONS
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Most Parallel Monte Carlo Simulations are often easy to parallelize.

 Particularly when they fit with the independent bag-of-work paradigm.

 Such stochastic simulations can easily tolerate a loss of jobs, if hopefully enough jobs 
finish for the final statistics…

 Requirements:

 Fine Generator, Fine Parallelization technique and “independent” Parallel random 
streams.

 Random statuses should be small and fast to checkpoint at Exascale
(Original MT – 6Kb status – MRG32K3a 6 integers)

 Should fit with different distributed computing platforms / HPC nodes

 Using regular processors

 Using hardware accelerators : GP-GPUs, Intel IGP/GPU Xe, Old Phi, (and FPGAs ?)

Parallel Stochastic Simulations…
Various requirements…



EVEN IF WE HAVE NO DEPENDENCIES BETWEEN ELEMENTARY

COMPUTING, REPEATABILITY OF PARALLEL SIMULATION IS NOT GRANTED

A system being of collection of interacting “objects” (dictionary definition) 
– a simulation will make all those objects evolve during the simulation time 
with a precise modeling goal. 

 To obtain repeatability – think parallel when you design your sequential code : 
Assign an « independent » pseudo-random stream and initialization status for each 
stochastic object of the simulation.

 An object could also encapsulate a random variate used at some points of the simulation. 
Every random variate could also have their own random stream with the same approach.

 This O.O. approach, applied to stochastic objects, is the key to have a reference 
sequential program that we will be able to compare to a parallel version.

[Hill 1996] : HILL D., “Object-oriented Analysis and Simulation”, Addison-Wesley, 1996, 291 p.



BASICS FOR REPEATABLE STOCHASTIC SIMULATIONS

WITH PARALLEL RANDOM NUMBER GENERATORS

Before proposing a method, we need to be aware of some elements:

1. Check with some top PRNGs used with different execution context (hardware, 
operating systems, compilers… (Use exactly the same inputs, Execute on various 
environments, When possible, compare our outputs with author’s outputs 
(from publications or given files)

2. Have a short list of top generators.

3. Be aware that the initialization of generators can 
matter (keep a huge amount of fine statuses 
if needed). 

4. Be aware of the major parallelization techniques 
for the current top generators

DAO V.T., MAIGNE L., BRETON V., NGUYEN H.Q., HILL D., “Numerical Reproducibility, Portability And Performance Of Modern Pseudo Random 
Number Generators : Preliminary study for parallel stochastic simulations using hybrid Xeon Phi computing processors”, European Simulation 
And Modelling Conference, Oct. 22-24, 2014, Porto, Portugal, pp. 80-87.
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SOME TOP PRNGS (PSEUDO RANDOM NUMBER GENERATORS)
FOR REPEATABLE PARALLEL STOCHASTIC SIMULATIONS

Green PRNGs are said ‘crush’ resistant (TestU01 software) and can be recommended:

 MRG (Multiple Recursive Generator) – slow but top API for reproducing parallel simulations
xi = (a1*xi-1 + a2*xi-2 + … + ak*xi-k + c) mod m – with k>1

Ex: MRG32k3a & MRG32kp – by L’Ecuyer and Panneton

 MLFG (Multiple Lagged Fibonacci Generator) – Non linear
by Michael Mascagni MLFG 6331_64 

 Mersenne Twisters – by Matsumoto, Nishimura, Saito (MT, SFMT, MTGP, TinyMT…)

 WELLs generators by – Panneton, L’Ecuyer and Matsumoto

 1,2,3… Parallel Phylox and Threefry – by Salmon et al. presented at SC’11 with crypto 
background and a parameterization technique. In his master’s thesis, Liang Li (Prof. Mascagni’s 
student couldn’t reproduce these tests. We had the same problem with Philox4x32-10. 

See the following reference for advices including hardware accelerators.

HILL D. PASSERAT-PALMBACH J. MAZEL C., TRAORE, M.K., "Distribution of Random Streams for Simulation Practitioners", 
Concurrency and Computation: Practice and Experience, June 2013, Vol. 25, Issue 10, pp. 1427-1442.



Remember that a stochastic program is « deterministic » if we use (initialize and parallelize) correctly 
the pseudo-random number.

1. An object oriented approach has to be chosen for every stochastic objects which has its own 
random stream. 

2. Select a modern and statistically sound generators according to the most stringent testing battery 
(TestU01);

3. Select a fine parallelization technique adapted to the selected generator,

4. The simulation must first be designed as a sequential program which would emulate parallelism: 
this sequential execution – with compiler flags set on ‘repeatability’ – will be the reference to 
compare parallel and sequential execution at small scales on the same node.

5. Externalize, sort or give IDs to the results for reduction in order to keep the execution order or use 
compensated algorithms

[Hill 2015] : Hill D., “Parallel Random Numbers, Simulation and reproducibility”. IEEE/AIP - Computing in Science and Engineering, vol. 17, no 4, 
2015, pp. 66-71.
[Hill et al 2017] : Hill D., Dao V.T., Mazel C., Breton V., « Répétabilité et reproductibilité numérique - Constats, conseils et bonnes pratiques pour 
le cas des simulations stochastiques parallèles et distribuées ». TSI, Technique et Sciences Informatiques, Vol. 36 n° 3-4/2017, pp. 243-272

A METHOD FOR REPEATABLE PARALLEL

STOCHASTIC SIMULATIONS



SAMPLE TEST
APPLICATION: 

PARALLEL MONTE CARLO
SIMULATION OF MUONIC

TOMOGRAPHY



TOMUVOL PROJECT

LMV (Laboratoire Magmas et 
Volcans) and LPC (Laboratoire 
de Physique Corpusculaire) 
made a joint venture with
computer scientists for this
TOMUVOL project
(TOmographie MUonique des 
VOLcans)

http://wwwobs.univ-bpclermont.fr/tomuvol/presentation.php 



Atmospheric muons go through matter. Depending on their energy and of the matter they 
traverse it is possible to reconstruct the inner image of a large edifice with multiple sensors

PRINCIPLE OF MUONIC TOMOGRAPHY

The muon is an elementary particle similar to the electron, with a negative charge and a spin of 1/2, but with a 
much greater mass. It is classified as a lepton. The muon is not believed to have any sub-structure—that is, it is 
not thought to be composed of any simpler particles (as is the case of other leptons). 

(figure by Samuel Béné)



TARGET NODES WITH REGULAR XEON & INTEL XEON PHI
XEON PHI – STILL ON TOP CEA MACHINE LIKE JOLIOT – CURIE > 9 PF

Parallel stochastic simulation of muonic tomography – Aim finish computing in less than 24h

 Parallel programming model using p-threads

 Each Muon is a stochastic object

 Multiple streams using MRG32k3a

 A billion threads handled by a single node

 Compiling flags set to maximum reproducibility – Sequential results obtained after 5 weeks – 3 
months for a single Phi core (results below are with all CPU/Phi cores).

https://github.com/HeisSpiter/HPCsim

1st we did a round of sequential optimization
with the code given by our physicists colleagues 

16X on a single CPU core – then // 25X with 32 phys.c.
400X on a node – Seq. computing time on a single node : 3 months

SCHWEITZER, P., MAZEL, C., FEHR, F., CÂRLOGANU, C., HILL D., “Proper parallel Monte Carlo for computed tomography of volcanoes”, Proceedings of the 
2013 International Conference on High Performance Computing & Simulation, ACM/IEEE/IFIP, Helsinki July 1st-5th, 2013, pp. 519-526.



REPRODUCIBILITY BETWEEN PHI & REGULAR XEON

FIRST ATTEMPTS

 First try with simple compilations of simulation to study the validity of the results
Intel C compiler with the "-O2 -g -Wall -Wextra" - (no -fast-math no aggressive –O3)

 For Xeon Phi, we added the "-mmic“ option. (no -fast-math no aggressive –O3).

 We evaluate the deviation in the results when the compilation is left free (limited to 1000 muons 
events – muon reaching the detector). Very important differences in final muon energy have been 
noticed (up to 0.18 GeV). We also noticed important differences for the final position (up to 0.3 m). 

 If the initial energy of the particle is between 5 GeV and 10 TeV, its final energy is between 0.15 GeV 
and 5 TeV (or even zero, if it does not even reach the detector). A difference of 0.18 GeV is therefore 
not acceptable. 

 The detector has plans whose size is one meter by one meter. An inaccuracy of 0.3 m on the end 
position means a 30% inaccuracy on one dimension of the plane! 

 Worse, the detector has a spatial detection of about 1 cm. An inaccuracy of the order of 30 cm (i.e., 
30 times more!) shows a clear failure of the reproducibility of the simulation.



MORE CAREFUL ATTENTION TO COMPILER FLAGS

After different tries with Intel Compiler flags we retained the following: 

“-fp-model precise -fp-model source -fimf-precision=high -no-fma” 

for the compilation on the Xeon Phi – (no -fast-math no aggressive –O3)

“-fp-model precise -fp-model source -fimf-precision=high” 

for the compilation on the Xeon CPU – (again no -fast-math no aggressive –O3)

With this set of flags, the results on the two architectures are reproducible (the same order).

Both of them have the same sign and the same exponent (even if some exceptions would be 
theoretically possible, they would be very rare and haven’t been observed). 

The only bits that can differ between these results are the least significant bits of the significand. 

For a given exponent e, and a result r1 = m × 2e, the closest value greater than r1 is r2 = (m + εd) ×
2e, where εd is the value of the least significant bit of the significand: εd = 2-52 ≈ 2.22 10-16.



BITWISE REPRODUCIBILITY

STUDY ON 2 DIFFERENT ARCHITECTURES (X86 VS K1OM)

As announced by Intel we cannot expect bit for bit reproducibility when working with such different 
architectures - in our case (x86 & k1Om).

 However with the best compiler flags, we observed bit for bit repeatability in single precision but 
not in double precision where we have little differences.

 The relative difference 
between processors 
(E5 vs Phi) in double 
precision were 
analyzed and 
are shown here >

Run-to-Run Reproducibility of Floating-Point Calculations for Applications on Intel® Xeon Phi™ Coprocessors (and Intel® Xeon® Processors) – by Martin Cordel -
https://software.intel.com/en-us/articles/run-to-run-reproducibility-of-floating-point-calculations-for-applications-on-intel-xeon

See also P. Schweitzer  thesis & paper : SCHWEITZER P., CIPIÈRE S., DUFAURE A., PAYNO H., PERROT Y., HILL D. and MAIGNE L., "Performance evaluation of multi-
threaded Geant4 simulations using an Intel Xeon Phi cluster", Scientific Programming, Article ID 980752, 10 pages, 2015. doi:10.1155/2015/980752.



 Huge Numerical differences when we do not pay attention to repeatability & compiler flags 

 Repeatability achieved for identical execution platforms.

 Comparison possible with sequential results !!! – (scale of a node - with a given method) 

 Numerical Reproducibility is possible (not repeatability) for Parallel Stochastic applications 
with independent computing on different architectures.

 Can be resilient to silent errors on supercomputers (use statistics – ‘N out of M’).

 Key elements of a method have been presented to produce numerically reproducible results 
for parallel stochastic simulations comparable with a sequential implementation (at the 
scale of a parallel node before large scaling on bigger systems)

 Numerical replication is important for scientists to verify and setup codes in many sensitive 
areas, finance, climate, nuclear safety, medicine… 

CONCLUSION

HPC CAN BE A BIG AMPLIFIER OF ERRORS…



QUESTIONS ?


