Seamless Kernel Operations on GPU, with auto-differentiation and without memory overflows

B. Charlier (IMAG - Univ Montpellier)
J. Feydy (Imperial College, London)
G. Durif (CNRS - IMAG - Univ Montpellier)
J. Glaunès (MAP5 - Univ Paris Descartes)

October 9th 2019 – Journées Calcul et Données (JCAD), Toulouse

http://www.kernel-operations.io/
ghislain.durif@umontpellier.fr
1. Introduction

2. Matrix reduction and kernel operations

3. Computation on GPU

4. Implementation

5. Using KeOps

6. Conclusion
Introduction
What KeOps can do?

• Compute **generic reductions** of very large arrays/matrices

\[
\sum_{i=1}^{M} a_{ij} \quad \text{or} \quad \sum_{j=1}^{N} a_{ij}
\]

for some large matrix \(A = [a_{ij}] \in \mathbb{R}^{M \times N} \)

• Compute **kernel** dot products and the associated gradients

\[
\sum_{i=1}^{M} K(x_i, y_j) \quad \text{or} \quad \sum_{j=1}^{N} K(x_i, y_j)
\]

for a kernel function \(K \) and some vectors \(x_i, y_j \in \mathbb{R}^{D} \)
What KeOps can do?

- Compute generic reductions of very large arrays/matrices
- Compute kernel dot products and the associated gradients
 - large dimensions M and $N \approx 10^4$ ou 10^6
 - fast computation on GPU without memory overflow
Kernel spaces in statistics and Learning

- Kernel density estimation:

- Classification/Regression: SVM, K-NN, etc...

- Kernel embeddings to compare distribution:

- Interpolation and Kriging

- Optimal Transport
Motivations

- GPU user-friendly computing: development effort oriented for deep learning
 - PyTorch or TensorFlow provide **GPU** implementation of common operations, together with **automatic differentiation**.

- GPU computing can be used for **general purpose computations**, not only neural networks
 - Generic codes to use GPU computing require low-level tools (CUDA, OpenCL)

- **Needs**: provide an effortless tool for GPU computing (application: statistics, machine learning and more)
Matrix reduction and kernel operations
Matrix reduction

- Simple row or column-wise matrix reduction

\[
\begin{bmatrix}
\sum_{i=1}^{M} a_{ij} \\
\end{bmatrix}_{j=1,\ldots,N} \in \mathbb{R}^{N} \quad \text{or} \quad \\
\begin{bmatrix}
\sum_{j=1}^{N} a_{ij} \\
\end{bmatrix}_{i=1,\ldots,M} \in \mathbb{R}^{M}
\]

for a matrix \(A = [a_{ij}] \in \mathbb{R}^{M \times N} \)

- Vector/matrix or matrix/matrix product

\[
\begin{bmatrix}
\sum_{i=1}^{M} a_{ij} \beta_j \\
\end{bmatrix}_{j=1,\ldots,N} \in \mathbb{R}^{N} \quad \text{or} \quad \\
\begin{bmatrix}
\sum_{j=1}^{N} a_{ij} \beta_j \\
\end{bmatrix}_{i=1,\ldots,M} \in \mathbb{R}^{M}
\]

for a matrix \(A = [a_{ij}] \in \mathbb{R}^{M \times N} \) and a vector \(\beta = [\beta_j] \in \mathbb{R}^{N} \)
Matrix reduction

\[
\begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\end{bmatrix}_{M \times N}
\]

\[
\begin{bmatrix}
\cdots & \cdots & \sum_{i=1}^{M} a_{ij} & \cdots & \cdots \\
\end{bmatrix}_{1 \times N}
\]
Matrix reduction

$$
\begin{bmatrix}
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\end{bmatrix}_{M \times N} \rightarrow
\begin{bmatrix}
\vdots \\
\vdots \\
\sum_{j=1}^{N} a_{ij} \\
\vdots \\
\vdots \\
\end{bmatrix}_{M \times 1}
$$
Kernel operator

Considering some data vector \(\mathbf{x}_i \) and \(\mathbf{y}_j \) in \(\mathbb{R}^D \)

- (Intuitively) a **kernel** function is an application \(K : \mathbb{R}^D \times \mathbb{R}^D \rightarrow \mathbb{R} \)

\[
(\mathbf{x}_i, \mathbf{y}_i) \mapsto K(\mathbf{x}_i, \mathbf{y}_i)
\]

corresponding to a **scalar product** between \(\mathbf{x}_i \) and \(\mathbf{y}_j \) in a different space

- Example

 Linear kernel:

 \[
 K(\mathbf{x}_i, \mathbf{y}_j) = \langle \mathbf{x}_i, \mathbf{y}_j \rangle = \mathbf{x}_i^T \mathbf{y}_j = \sum_{k=1}^{D} x_{ik} y_{jk}
 \]

 Gaussian kernel:

 \[
 K(\mathbf{x}_i, \mathbf{y}_j) = \exp \left(-\frac{1}{2\sigma^2} \| \mathbf{x}_i - \mathbf{y}_j \|_2^2 \right)
 \]
Kernel reduction

- Convolution-like operation

\[
\begin{bmatrix}
\sum_{i=1}^{M} K(x_i, y_j) \beta_j
\end{bmatrix}
\quad \in \mathbb{R}^N
\]

or

\[
\begin{bmatrix}
\sum_{j=1}^{N} K(x_i, y_j) \beta_j
\end{bmatrix}
\quad \in \mathbb{R}^M
\]

for some D-vectors $\mathbf{x}_i \in \mathbb{R}^{M \times D}, \mathbf{y}_j \in \mathbb{R}^{N \times D}$ and $\beta = [\beta_j] \in \mathbb{R}^N$

→ Row-wise or column-wise reduction on the matrix $\mathbf{K} = \begin{bmatrix} K(x_i, y_j) \end{bmatrix} \in \mathbb{R}^{M \times N}$
Kernel reduction

\[
\begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times \\
\end{bmatrix}
\]

\[K(x_i, y_j)\]

\[
\downarrow
\]

\[
\begin{bmatrix}
\cdots & \cdots & \sum_{i=1}^{M} K(x_i, y_j) & \cdots & \cdots \\
\end{bmatrix}
\]

\[1 \times N\]

\[M \times N\]
Kernel reduction

\[
\begin{bmatrix}
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times & \times & \times \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\sum_{j=1}^{N} K(x_i, y_j) & \times & \times & \times \\
\end{bmatrix}
\]

\[M \times N \rightarrow M \times 1\]
Kernel reduction

• More complex operation

$$\sum_{i=1}^{M} K_1(x_i, y_j) K_2(u_i, v_j) \langle \alpha_i ; \beta_j \rangle \text{ or } \sum_{j=1}^{N} K_1(x_i, y_j) K_2(u_i, v_j) \langle \alpha_i ; \beta_j \rangle$$

for some kernel K_1 and K_2, and some D-vectors $(x_i)_i, (u_i)_i, (\alpha_i)_i \in \mathbb{R}^{M \times D}$ and $(y_j)_j, (v_j)_j, (\beta_j)_j \in \mathbb{R}^{N \times D}$
Generic reduction in KeOps

$1 \leq i \leq N$ et $1 \leq j \leq M$ avec $N, M \approx 10^4$ ou 10^6

- A generic case:

$$\sum_j F(\sigma_1, \cdots, \sigma_\ell, X_1^i, \cdots, X_\ell^i, Y_1^j, \cdots, Y_\ell^j) \quad \in \mathbb{R}^M$$

 $i=1,\ldots,M$

- ...an even more generic case:

$$\mathcal{\star} F(\sigma_1, \cdots, \sigma_\ell, X_1^i, \cdots, X_\ell^i, Y_1^j, \cdots, Y_\ell^j) \quad \in \mathbb{R}^M$$

 $i=1,\ldots,M$

where $\mathcal{\star}$ can be any reduction (sum, max, min, etc.) over a dimension
Why GPU computing

- Matrix/kernel reduction = combination of generic matrix operations

- GPU are good for matrix computations

- **Problem:** the matrix $K = [K(x_i, y_j)] \in \mathbb{R}^{M \times N}$ is very large ($M, N \approx 10^4 \text{ ou } 10^6$)

 → how to store it in memory

 → how to iterate through rows/columns to do computations
Computation on GPU
The GPU Market by Nvidia

Target:

- Gamers: 1000 euros
- Scientific computing: 3000 – 9000 euros

Under the hood: similar chipsets with few enhancements (ECC, float64,…)
GPU = massively parallel architecture

A GPU architecture

→ scalable array of multithreaded Streaming Multiprocessors (SMs)

→ each single processor (called a thread) is able to execute an independent set of instructions.

1000’s of cores inside a single GPU

(multi-CPU architecture = at best 10’s – 100’s of cores)
MatMult: A first naive implementation

\(A \in \mathbb{R}^{M \times N} \) and \(B \in \mathbb{R}^{N \times D} \)

A matrix multiplication

\[AB = \left[\sum_k a_{ik} b_{kj} \right]_{M \times D} \]

\(\rightarrow \) a set of \(N \times D \) scalar products

Parallel computing

- each thread computes \(D \) scalar products, i.e. \(\langle a_{i.}, b_{.j} \rangle \) for all \(j \)
MatMult: A first naive implementation

\[A \in \mathbb{R}^{M \times N} \text{ and } B \in \mathbb{R}^{N \times D} \]

Thread \(i \) needs to access

- row \(a_i \in \mathbb{R}^N \)
- all columns \((b_j)_{j=1}^D\) i.e. the full matrix \(B \)

→ potential memory overflow

→ no mutualisation of memory access between threads
MatMult: A first naive implementation

\[A \in \mathbb{R}^{M \times N} \text{ and } B \in \mathbb{R}^{N \times D} \]

Assign a block of rows \(i \) to a thread

- mutualise the memory access to each \(B_j \) to compute all rows \(i \) in the block

\[\langle a_i, b_j \rangle \]

→ each thread still requires to access the full matrix \(B \) to finish the computations for a row \(i \)
Memory management on GPU

• Data initially stored on the host (in RAM) → should be transferred to the device (GPU) to be treated (bottleneck)

• Different kinds of memory → local vs shared memory

Smart use of the shared memory
→ less transfer between device and host
→ key to provide an efficient code in term of computational time
MatMult: Tiled implementation (decomposition with block sub-matrix product)

- Tasks (scanning rows a_i) divided into tiles
- All thread use the shared memory within a block
 → a single memory transfered of each tile in B for all threads
MatMult: Tiled implementation (decomposition with block sub-matrix product)

- Tasks (scanning rows a_i) divided into tiles
- All thread use the shared memory within a block
 - a single memory transfered of each tile in B for all threads
MatMult: Tiled implementation (decomposition with block sub-matrix product)

- Accumulation (addition of the intermediate results) when scanning tiles across A

Diagram:
- Block
- Thread
- Load in shared mem
- a_{ij}
- b_{ij}
- $\langle a_{ij}, b_{ij} \rangle$
Benchmark I

Runtimes for Gaussian Matrix-Vector products in dimension 3

- **backend = “Numpy”**
- **backend = “PyTorch”**
- **backend = “KeOps”**

Memory overflow!
(a) Matrix-vector products with N-by-N Gaussian kernel matrices built from point clouds in dimension $D = 3$.

(b) Solving an N-by-N Gaussian kernel linear system with ridge regularization (constant diagonal weights).

(c) 10 iterations of K-means (Lloyd's algorithm) with N points in dimension $D = 10$ and $K = \lfloor \sqrt{N} \rfloor$ clusters.

(d) Exact ($K = 10$)-nearest neighbor search: 10k queries in dimension $D = 100$ with a database of N samples.
Implementation
Coding generic formulas with KeOps

• **Mathematical formula** with two vectors \(\mathbf{x}, \mathbf{y} \in \mathbb{R}^D \):

\[
(x, y) \mapsto \exp (\langle x, y \rangle)
\]

• A formula \(F \) in KeOps is first encoded as a string using combinations of elementary operations

"Exp(Scalprod(x,y))"

• Then it is expanded internally in the C++ code using templates:

\[
F = \text{Exp<Scalprod<X,Y>>}
\]

→ A formula is an instantiation of a variadic recursively defined templated class

→ KeOps is able to generate shared objects that compute on a GPU (compilation on the fly)
Coding generic formulas with KeOps

- Mathematical formula with two vectors $x, y \in \mathbb{R}^D$:
 \[(x, y) \mapsto \exp(\langle x, y \rangle)\]

- A formula F in KeOps is first encoded as a string using combinations of elementary operations:
 "Exp(Scalprod(x,y))"

- Then it is expanded internally in the C++ code using templates:
 \[F=\text{Exp<Scalprod<X,Y>>}\]

→ A formula is an instantiation of a variadic recursively defined templated class

→ KeOps is able to generate shared objects that compute on a GPU (compilation on the fly)
Coding generic formulas with KeOps

• Mathematical formula with two vectors \(x, y \in \mathbb{R}^D \):
 \[
 (x, y) \mapsto \exp(\langle x, y \rangle)
 \]

• A formula \(F \) in KeOps is first encoded as a string using combinations of elementary operations
 "\texttt{Exp(Scalprod(x,y))}"

• Then it is expanded internally in the C++ code using templates:
 \[
 F=\texttt{Exp<Scalprod<X,Y>>}
 \]

→ A formula is an instantiation of a variadic recursively defined templated class
→ KeOps is able to generate shared objects that compute on a GPU (compilation on the fly)
Coding generic formulas with KeOps

• Mathematical formula with two vectors \(x, y \in \mathbb{R}^D \):

\[
(x, y) \mapsto \exp(\langle x, y \rangle)
\]

• A formula \(F \) in KeOps is first encoded as a string using combinations of elementary operations:

"Exp(Scalprod(x,y))"

• Then it is expanded internally in the C++ code using templates:

\[
F=\text{Exp<Scalprod<X,Y>>}
\]

→ A formula is an instantiation of a variadic recursively defined templated class

→ KeOps is able to generate shared objects that compute on a GPU (compilation on the fly)
Coding generic formulas with KeOps

- Mathematical formula with two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^D$:
 $$(\mathbf{x}, \mathbf{y}) \mapsto \exp (\langle \mathbf{x}, \mathbf{y} \rangle)$$

- A formula F in KeOps is first encoded as a string using combinations of elementary operations

 "Exp(Scalprod(x,y))"

- Then it is expanded internally in the C++ code using templates:

 $F=\text{Exp}<\text{Scalprod}<X,Y>>$

→ A formula is an instantiation of a variadic recursively defined templated class

→ KeOps is able to generate shared objects that compute on a GPU (compilation on the fly)
A typical KeOps (unary) operation is a `struct` that looks like:

```cpp
template<class F>  
struct Exp : UnaryOp<Exp, F> {

  // dimension of the output
  static const int DIM = F::DIM;

  // inlined function in the final cuda code
  static DEVICE INLINE void Operation(TYPE *out, TYPE *in) {
    #pragma unroll
    for (int k = 0; k < DIM; k++) { out[k] = exp(in[k]); }
  }
}
```
Gradient computation:

```cpp
template<class V, class GRADIN>
using DiffT = typename F::template DiffT<V, Mult<Exp<F>, GRADIN>>;
};
```

String encoding:

```cpp
#define Exp(f) Exp<decltype(f)>()
```
A typical KeOps (binary) operation is a **struct** that looks like:

```cpp
template < class FA, class FB >
struct Add : BinaryOp< Add, FA, FB > {
    // dimension of the output ... and (compile time) checks
    static const int DIM = FA::DIM; // Output dim = FA::DIM = FB::DIM
    static_assert(DIM == FB::DIM, "Dimensions must be the same for Add");
}
```

Implementation of the operation:

```cpp
static DEVICE INLINE void Operation(TYPE *out, TYPE *inA, TYPE *inB) {
    for (int k = 0; k < DIM; k++) {out[k] = inA[k] + inB[k];}
}
```
Gradient computation:

```cpp
//////////////// Autodiff!

template < class V, class GRADIN >
using DiffT = Add< typename FA::template DiffT< V, GRADIN >,
                   typename FB::template DiffT< V, GRADIN > >;
```

Simplification rule:

```cpp
//////////////// Simplification rules: e.g.

template < class F >
struct Add_Alias0< F, F > { using type = Scal< IntConstant< 2 >, F >; }; 
```
KeOps proposes a wide range of elementary operations

- **Simple vector operations:** scalar product, norm, distance, normalization, vector/vector element-wise operation ($+, -, *, /$), etc.

- **Elementary $\mathbb{R} \rightarrow \mathbb{R}$ functions:** exp, log, inverse, abs, pow, sqrt, sin, cos, etc.

- **Simple matrix operations:** matrix product, tensor product (in Python), etc.

- **Matrix reduction:** sum, min, max, argmin, argmax, etc.

→ a formula = a combination of these operations
Using KeOps
Kernel Operations on the GPU, with autodiff, without memory overflows

KeOps

The KeOps library lets you compute generic reductions of large 2d arrays whose entries are given by a mathematical formula. It combines a tileied reduction scheme with an automatic differentiation engine, and can be used through Matlab, NumPy or PyTorch backends. It is perfectly suited to the computation of Kernel dot products and the associated gradients, even when the full kernel matrix does not fit into the GPU memory.

Using the PyTorch backend, a typical sample of code looks like:

```python
import torch
from pykeops.torch import KeOps

# Kernel density estimator between point clouds in R^3
my_name = General('Exp(-SoftSign(x,y))', # Formula
                  ['x = V[i]', 'y = V[j]',  # 1st input: dim-3 vector per line
                  'i = V[1]', 'j = V[2]',  # 2nd input: dim-3 vector per column
                  'reduction = Sum', # we also support LogSumExp, Max, etc.
                  'axis=1'])

# Apply it to 2d arrays x and y with 3 columns and a (huge) number of lines
x = torch.randn(1000000, 3, requires_grad=True).cuda()
y = torch.randn(2000000, 3, out=coi)
ax = my_name(x, y) # Shows (1000000, 2), an.j = axj[ax-w[,j,v],[i]2]
xax = torch.antigrad.grad(ax.sum(), [x]) # KeOps supports autodiff!
```

KeOps allows you to leverage your GPU without compromising on usability. It provides:

- Linear (instead of quadratic) memory footprint for Kernel operations.
- Support for a wide range of mathematical formulas.

KeOps

http://www.kernel-operations.io

- doc
- install instructions
- examples
KeOps stack

- Dependencies: **Cmake** (≤3.10), C++ compiler\(^1\) (g++ ≥ 7 or clang) or **cuda** compiler (nvcc ≥10) and CUDA libs (for GPU computing)

- Open source (MIT licence): github.com/getkeops/keops

- Continuous integration (tested on linux distros and MacOS): Jenkins at ci.inria.fr

\(^1\)for CPU computing
KeOps user interface

- PyKeOps: Python (numpy and pytorch)
- KeOpsLab: Matlab
- RKeOps: R (beta version)
- C++ API
Example in Python: single Gaussian convolution

We want to compute

\[\gamma_i = \sum_{j=1}^{N} \exp \left(-s \| x_i - y_j \|_2^2 \right) b_j \]

with \(s \in \mathbb{R} \), \([x_i]_{i=1,...,M} \in \mathbb{R}^{M \times 3} \), \([y_j]_{j=1,...,N} \in \mathbb{R}^{N \times 3} \) and \([b_j]_{j=1,...,N} \in \mathbb{R}^{N \times 6} \)
Example in Python: single Gaussian convolution

From Python using Numpy (similar in R or Matlab)

```python
from pykeops.numpy import Genred

## compilation on the fly (user-friendly syntax)
my_conv = Genred(
    formula="Sum_Reduction(Exp(-s * SqNorm2(x - y)) * b, 0)",
    aliases=["s = Pm(1)", # parameter (scalar)
             "x = Vi(3)", # vector indexed by i (of dim 3)
             "y = Vj(3)", # vector indexed by j (of dim 3)
             "b = Vj(6)"], # vector indexed by j (of dim 6)
    dtype='float32'
)

# assuming s, x, y and b are Numpy arrays (data and parameter values)

## compute directly on the GPU
gamma = my_conv(s, x, y, b)
```
Example in Python (LazyTensor)

Mathematical formula (standard Gaussian kernel)

$$\gamma_i = \sum_{j=1}^{N} \exp \left(\| x_i - y_j \|_2^2 \right)$$

with \([x_i]_{i=1,\ldots,M} \in \mathbb{R}^{M \times 3}, [y_j]_{j=1,\ldots,N} \in \mathbb{R}^{N \times 3}\)
Example in Python (LazyTensor)

Create two arrays with 3 columns and a (huge) number of lines, on the GPU

```python
import torch
x = torch.randn(1000000, 3, requires_grad=True).cuda()
y = torch.randn(2000000, 3).cuda()
```

Given the same data tensors x and y. Use a decorator to turn tensors into KeOps symbolic variables:

```python
from pykeops.torch import LazyTensor
x_i = LazyTensor(x[:,None,:])  # x_i.shape = (1e6, 1, 3)
y_j = LazyTensor(y[None,:,:])   # y_j.shape = ( 1, 2e6,3)
```
Perform symbolic large-scale computations

Symbolic (1e6,2e6,1) matrix of squared distances
$$D_{ij} = ((x_i - y_j)^2).\text{sum(dim=2)}$$

Symbolic (1e6,2e6,1) Gaussian kernel matrix
$$K_{ij} = (- D_{ij}).\text{exp()}$$

Get the result (computations on GPU are done here)
$$a_i = K_{ij}.\text{sum(dim=1)}$$ # Genuine torch.cuda.FloatTensor
a_i.shape = (1e6, 1)

KeOps supports autograd!
$$g_x = \text{torch.autograd.grad}((a_i ** 2).\text{sum()}, [x])$$
Example in R

```r
formula = "Sum_Reduction(Exp(lambda*SqNorm2(x-y))*beta, 1)"
args = c("x=Vi(3)", "y=Vj(3)", "beta=Vj(3)", "lambda=Pm(1)"

op <- keops_kernel(formula, args) # compilation

# data and parameters
nx = 1000
ny = 1500
x <- matrix(runif(nx*3), ncol=nx)
y <- matrix(runif(ny*3), ncol=ny)
beta <- matrix(runif(ny*3), ncol=ny)
lambda <- as.matrix(5)

# computation
res <- op(args=list(x, y, beta, lambda), nx=ncol(x), ny=ncol(y))
```
Example in R

- beta version
- Gradient computation not available for the moment
- Specific branch `rkeops`

```
  git clone https://github.com/getkeops/keops
  git checkout rkeops
```

- See `rkeops/REAMD.md` for install instructions
More features (not presented today)

- **PyKeOps (Numpy), KeOpsLab**: formula gradient computation

- **PyKeOps (PyTorch)**: automatic differentiation engine (compatible with PyTorch autograd)

- **In the near future**
 - gradient computation and lazy evaluation in **Rkeops**
 - possible to add new generic operations upon request (responsive user support via Github issues)
 - and more...
Conclusion
KeOps:

Seamless Kernel Operations...

→ write formulas with simple matrix operations (Python, Matlab, R)

...on GPU...

→ fast computations

...with auto-differentiation...

→ automatic gradient computation

...and without memory overflows

→ implementation with tiling for efficient memory usage on GPU
Thank you for your attention

Questions?

http://www.kernel-operations.io/keops/index.html

https://github.com/getkeops/keops