KeOps ¢

Seamless Kernel Operations on GPU, with auto-differentiation and without
memory overflows

B. Charlier (mac - univ Montpeliier) G. Durif (enRrs - IMAG - Univ Montpellier)
J. Feydy (Imperial College, London) J. Glaunes (MAPS - Univ Paris Descartes)

October 9th 2019 - Journées Calcul et Données (JCAD), Toulouse

http://www.kernel-operations.io/
ghislain.durif@umontpellier.fr

http://www.kernel-operations.io/
ghislain.durif@umontpellier.fr

1. Introduction

2. Matrix reduction and kernel operations
3. Computation on GPU

4. Implementation

5. Using KeOps

6. Conclusion

Introduction

What KeOps can do?

- Compute generic reductions of very large arrays/matrices
M N
> a or > g
=1 j:]

for some large matrix A = [a;] € RV

- Compute kernel dot products and the associated gradients

M N

S TKxiy) or YK,y

i=1 j=1

for a kernel function K and some vectors x;,y; € R”

What KeOps can do?

- Compute generic reductions of very large arrays/matrices

- Compute kernel dot products and the associated gradients

— large dimensions M and N (~ 10* ou 10°)

— fast computation on GPU without memory overflow

Kernel spaces in statistics and Learning

- Kernel density estimation: /\
- Classification/Regression: SVM, K-NN, etc... &*a \\
" ~ P

- Kernel embeddings to compare distribution:

- Interpolation and Kriging

- Optimal Transport

- GPU user-friendly computing: development effort oriented for deep learning

— PyTorch or TensorFlow provide GPU implementation of common operations,
together with automatic differentiation.

- GPU computing can be used for general purpose computations, not only
neural networks

— Generic codes to use GPU computing require low-level tools (CUDA, OpenCL)

- Needs: provide an effortless tool for GPU computing (application: statistics,
machine learning and more)

Matrix reduction and kernel
operations

Matrix reduction

- Simple row or column-wise matrix reduction

for a matrix A = [g;] € R"*"

- Vector/matrix or matrix/matrix product
M

5 a4
=1

for a matrix A = [a;] € R"*" and a vector 8 = [3] € R"

eR" or Z a; B e R
=1

j=1,...,N J=1 i=1,...M

Matrix reduction

X X X X
X X X X
X X X X
X X X X
X X X X
L J MxN
!
>iLqa;

IxN

Matrix reduction

X X X X X

X X X X X f
. - (o

X X X X X :

X X X X X :
L d MxN L d Mx1

Kernel operator

Considering some data vector x; and y; in RP

- (Intuitevely) a kernel function is an application K: R? x RP - R
(vayi) = K(Xivyf)

corresponding to a scalar product between x; and y; in a different space

- Example
Linear kernel: K(x;,y;) = (Xi, yj) ZX//? Yik

Gaussian kernel: K(x;,y;) = exp <—%2HXI - ysz)

Kernel reduction

- Convolution-like operation

M N
[Z K(X/,yj‘)ﬁj] eR" or | K(x,y)8 e R"

.....

— Row-wise or column-wise reduction on the matrix K = [K(x,-,yj)} e RMxN

| X X X X |
X X X X
X X X X
X X X X
X X X X
L d MxN
1
S K,)

TxN

Kernel uction

X X X X X
X X X X X :
= | T K(x;,v))
=1 irY
X X X X X :
X X X X X :
L d MxN L d Mx1

Kernel reduction

- More complex operation
Z Ki(x;,¥;) Ka(uj, vj) {evi; B;) or Z Ki(Xi, y;) Ka(uj, v)) (e s 3))
i=1 j=1

for some kernel K; and Kz, and some D-vectors (x;);, (u;)i, (a;); € R"*? and
)i (v);; (8)); € R™P

Generic reduction in KeOps

1<i<Net1<j<MavecN,M=10* ou 10°

- A generic case:
ZF(U%aUE,X]»X,k,Y’JY;%) GRM

+ ...an even more generic case:

>|<F(a1,.~,ag,x}.-~,x?,v}.-»-.vj,”) e R
i ,

where >|< can be any reduction (sum, max, min, etc.) over a dimension

Why GPU computing

- Matrix/kernel reduction = combination of generic matrix operations
- GPU are good for matrix computations

- Problem: the matrix K = [K(x,—,yj)} c R"Nis very large (M, N = 10* ou 10°)
— how to store it in memory

— how to iterate through rows/columns to do computations

10

Computation on GPU

The GPU Market by Nvidia

Target:

- Gamers: 1000 euros

- Scientific computing: 3000 — 9000 euros

Under the hood: similar chipsets with few en-
hancements (ECC, float6s,...)

"

GPU = massively parallel architecture

A GPU architecture

— scalable array of multithreaded
Streaming Multiprocessors (SMs)

— each single processor (called a thread)
is able to execute an independent set
of instructions.

Nividia GTX XXXX architecture

1000's of cores inside a single GPU

(multi-CPU architecure = at best 10’s — 100’s of cores)
12

MatMult: A first naive implementation

A € RMXN and B € RVXP

thread |

A matrix multiplication
AB = [ajx b }
Zk ik YRj MxD
— a set of N x D scalar products
Parallel computing

- each thread computes D scalar
products, i.e. (a;.,b.;) forallj

13

MatMult: A first naive implementation

A € RMXN and B € RVXP

Thread | needs to access
- row a; € RV

+ all columns (b.j);—
matrix B

p lL.e. the full

— potential memory overflow

thread |

— no mutualisation of memory access
between threads

13

MatMult: A first naive implementation

A € RMXN and B € RVXP

Assign a block of rows i to a thread

- mutualise the memory access to
each B, to compute all rows i in the
block

— each thread still requires to access
the full matrix B to finish the
computations for a row |

Block
thread |

13

Memory management on GPU

- Data initially stored on the host (in RAM)

— should be transfer to the device (GPU)
to be treated (bottleneck)

- Different kinds of memory
— local vs shared memory

Smart use of the shared memory
— less transfer between device and host

— key to provide an efficient code in term of
computational time

14

MatMult: Tiled implementation (decomposition with block sub-matrix product)

> load in shared mem

- Tasks (scanning rows a;) divided
into tiles

- All thread use the shared memory
within a block
— a single memory transfered of
N D each tile in B for all threads

15

MatMult: Tiled implementation (decomposition with block sub-matrix product)

> load in shared mem

- Tasks (scanning rows a;) divided
into tiles

Block
thread |

- All thread use the shared memory
within a block
— a single memory transfered of
N D each tile in B for all threads

15

MatMult: Tiled implementation (decomposition with block sub-matrix product)

> load in shared mem

N

M - Accumulation (addition of the
intermediate results) when
scanning tiles across A

Block
thread |

15

Benchmark |

@
k<l
2
8
&

Runtimes for Gaussian Matrix-Vector products in dimension 3

—e— backend = "Numpy"
backend = "PyTorch"
—#— backend = "KeOps"

Memory overflow!

10% 10* 10°
Number of samples

Benchmark Il

P — 3
PTeren @0 fioa

ReKevws (GPU float)
»
PyKaess (GPU float)

b EEE TR Sk ‘

102 10? 10* 10° 100

Number of points N = M

(a) Matrix-vector products with N-by-N Gaussian kernel
matrices built from point clouds in dimension D = 3.

qut of mem
.

»
x4
—A— R (solve{base}
_ - |- - Pyloreh (@PU floar) | |
- ReKawnn (GPU float)
~ W~ Pykexnn (GPU float)
| T
102 10% 10t 10° 100

Number of points N = M

(b) Solving an N-by-N Gaussian kernel linear system with
ridge regularization (constant diagonal weights).

102 : 10t
—4— R (means{stat}) 3
101 || - 4= PyTorch (GPU float) 100 .
ReKewor (GPU float) o
10° | - w- Pykexss (GPU float) out of megy -
194 3 -w
= .-
0t = B
5 1072 g BT i PP (ai{ class})
0 B R e s stk 8
s - - PyTorch (GRU float)
103 1072 e R-Kewer (GPU £loat)
.-* - W~ PyKewws (GRU float)
| | T
10? 10? 10t 107 10° 10% 10° 10t 10° 10°

Number of points N Number of points N

(d) Exact (K = 10)-nearest neighbor search: 10k queries

(c) 10 iterations of K-means (Lloyd’s algorithm) with N
in dimension D = 100 with a database of N samples. 17

points in dimension D = 10 and K = [v/N| clusters.

Implementation

Coding generic formulas with KeOps

- Mathematical formula with two vectors x,y € RP:

(X,y) — exp ((X,y))

- Aformula F in KeOps is first encoded as a string using combinations of
elementary operations

"Exp(Scalprod(x,y))"

- Then it is expanded internally in the C++ code using templates:
F=Exp<Scalprod<X, Y>>

— Aformula is an instantiation of a variadic recursively defined templated class

— KeOps is able to generate shared objects that compute on a GPU
(compilation on the fly)

Coding generic formulas with KeOps

- Mathematical formula with two vectors x,y € RP:

(X,y) — exp ((X,y))

- Aformula Fin KeOps is first encoded as a string using combinations of
elementary operations

"Exp(Scalprod(x,y))"

- Then it is expanded internally in the C++ code using templates:
F=Exp<Scalprod<X, Y>>

— Aformula is an instantiation of a variadic recursively defined templated class

— KeOps is able to generate shared objects that compute on a GPU
(compilation on the fly)

Coding generic formulas with KeOps

- Mathematical formula with two vectors x,y € RP:

(X,y) — exp ((X,y))

- Aformula F in KeOps is first encoded as a string using combinations of
elementary operations

"Exp(Scalprod(x,y))"

- Then it is expanded internally in the C++ code using templates:
F=Exp<Scalprod<X, Y>>

— Aformula is an instantiation of a variadic recursively defined templated class

— KeOps is able to generate shared objects that compute on a GPU
(compilation on the fly)

Coding generic formulas with KeOps

- Mathematical formula with two vectors x,y € RP:

(X,y) — exp ((X,y))

- Aformula F in KeOps is first encoded as a string using combinations of
elementary operations

"Exp(Scalprod(x,y))"

- Then it is expanded internally in the C++ code using templates:
F=Exp<Scalprod<X, Y>>

— Aformula is an instantiation of a variadic recursively defined templated class

— KeOps is able to generate shared objects that compute on a GPU
(compilation on the fly)

Coding generic formulas with KeOps

- Mathematical formula with two vectors x,y € RP:

(X,y) — exp ((X,y))

- Aformula F in KeOps is first encoded as a string using combinations of
elementary operations

"Exp(Scalprod(x,y))"

- Then it is expanded internally in the C++ code using templates:
F=Exp<Scalprod<X, Y>>

— Aformula is an instantiation of a variadic recursively defined templated class

— KeOps is able to generate shared objects that compute on a GPU
(compilation on the fly)

Under the hood: C++ encoding of maths operations in KeOps |

A typical KeOps (unary) operation is a struct that looks like:

template<class F>
struct Exp : UnaryOp<Exp, F> {

//////////////// dimension of the output
static const int DIM = F::DIM;

Implementation of the operation:

//////////////// inlined function in the final cuda code
static DEVICE INLINE void Operation(TYPE =out, TYPE xin) {
#pragma unroll
for (int k = 0; k < DIM; k++) { out[k] = exp(in[k]); }
}

Under the hood: C++ encoding of maths operations in KeOps |

Gradient computation:

////7/7//7//7///// Autodiff!

template<class V, class GRADIN>

using DiffT = typename F::template DiffT<V, Mult<Exp<F>, GRADIN>>;
b

String encoding:

//////////////// Macro providing high level syntax
#define Exp(f) Exp<decltype(f)>()

e hood: C++ encoding of maths operations in KeOps Il

A typical KeOps (binary) operation is a struct that looks like:

template < class FA, class FB >

struct Add : BinaryOp< Add, FA, FB > {

//////////////// dimension of the output ... and (compile time) checks
static const int DIM = FA::DIM; // Output dim = FA::DIM = FB::DIM
static_assert(DIM == FB::DIM, "Dimensions must be the same for Add");

Implementation of the operation:

//////////////// inlined function in the final cuda code
static DEVICE INLINE void Operation(TYPE xout, TYPE *inA, TYPE #*inB) {
for (int k = 0; k < DIM; k++) {out[k] = inA[k] + inB[k];}
}

20

Under the hood: C++ encoding of maths operations in KeOps Il

Gradient computation:

//1777/7/77/7//// Autodiff!
template < class V, class GRADIN >
using DiffT = Add< typename FA::template DiffT< V, GRADIN >,
typename FB::template DiffT< V, GRADIN > >;

i
Simplification rule:
//////////////// Simplification rules: e.g.

template < class F >
struct Add_Alias0@< F, F > { using type = Scal< IntConstant< 2 >, F >; };

20

Combining elementary operations

KeOps proposes a wide range of elementary operations

- Simple vector operations: scalar product, norm, distance, normalization,
vector/vector element-wise operation (+,-,*,/), etc.

- Elementary R — R functions: exp, log, inverse, abs, pow, sqrt, sin, cos, etc.
- Simple matrix operations: matrix product, tensor product (in Python), etc.

- Matrix reduction: sum, min, max, argmin, argmax, etc.
— a formula = a combination of these operations

21

Using KeOps

http://www.kernel-operations.io/

using K

Installation

Formu yntax

Aute

i engine

Road m:

Benc

marks

Tutorals, appiica

API

b binding for KeOps

Docs » Kernel Operations on the GPU, with autodiff, without memory overflows. 4 Edit on GitLab

KeOps ¢§

Kernel Operations on the GPU, with autodiff, without memory
overflows

The KeOps library lets you compute generic reductions of large 2d arrays whose entries are given by a mathematical formula. It
combines a tiled reduction scheme with an automatic differentiation engine, and can be used through Matlab, NumPy or

PyTorch backends. Itis perfectly suited to the computation of Kernel dot products and the associated gradients, even when the
full kernel matrix does not fit into the GPU memory.

Using the PyTorch backend, a typical sample of code looks like:

amport torch
from pykeops. torch inport Genred

ny_cony = Genred('Exp(
0% ain-3 vector per Line

axis=1) sum with respect to “J", result indexed by "
Apply it to 2d arrays x and y with 3 and a (huge) number of Lines
X = toreh.randn(1600000, 3, requires_grad=True) .cuda()

y = torch.randn(200000, 3).cuda()

a = my_conv(x, ¥) , at=

g.x = torch.autograd.grad((a ** 2).sua(), [x])

.

KeOps allows you to leverage your GPU without compromising on usability. It provides:

+ Linear (instead of quadratic) memory footprint for Kernel operations.
* Support for a wide range of mathematical formulas.

- doc

- install instructions

- examples

22

http://www.kernel-operations.io/

KeOps stack

- Dependencies: Cmake (<310), C++ compiler' (g++ > 7 or clang) or cuda
compiler (nvcc >10) and CUDA libs (for GPU computing)

- Open source (MIT licence): github.com/getkeops/keops

- Continuous integration (tested on linux distros and MacOs): Jenkins at
ci.inria.fr

- Sphinx based documentation on http://www.kernel-operations.io/

for CPU computing

23

github.com/getkeops/keops
ci.inria.fr
http://www.kernel-operations.io/

KeOps user interface

- PyKeOps: Python (numpy and pytorch)

- KeOpsLab: Matlab

- RKeOps: R (beta version)

+ C++ API

@ o & N

24

Example in Python: single Gaussian convolution

We want to compute

7= Y e (= sl -y) b
=1

yeR ™ and b € RS

25

Example in Python: single Gaussian convolution

From Python using Numpy (similar in R or Matlab)
from pykeops.numpy import Genred
compilation on the fly (user-friendly syntax)

my_conv = Genred(
formula="Sum_Reduction(Exp(-s * SgNorm2(x - y)) * b, 0)",

aliases=["s = Pm(1)", # parameter (scalar)
"x = Vi(3)", # vector indexed by i (of dim 3)
"y = Vji(3)", # vector indexed by j (of dim 3)
"b = Vvj(6)"], # vector indexed by j (of dim 6)

dtype="'float32")
assuming s, x, y and b are Numpy arrays (data and parameter values)

compute directly on the GPU

gamma = my_conv(s, X, y, b) 2

Example in Python (LazyTensor)

Mathematical formula (standard Gaussian kernel)
vi=> e (% =5
j=1

with [xi]i=1, m € RM>3, [yj],v':l y € RNVX3

26

Example in Python (LazyTensor)

Create two arrays with 3 columns and a (huge) number of lines, on the GPU

import torch
x = torch.randn(1000000, 3, requires_grad=True).cuda()
y = torch.randn(2000000, 3).cuda()

Given the same data tensors x and y. Use a decorator to turn tensors into KeOps
symbolic variables:

from pykeops.torch import LazyTensor
Xx_i = LazyTensor(x[:,None,:]) # x_i.shape
y_j = LazyTensor(y[None,:,:]) # y_j.shape

(1e6, 1, 3)
(1, 2e6,3)

26

Example in Python (LazyTensor)

Perform symbolic large-scale computations

Symbolic (1e6,2e6,1) matrix of squared distances
D_ij = ((x_i - y_j)**2).sum(dim=2)

Symbolic (1e6,2e6,1) Gaussian kernel matrix
K ij = (- D_ij).exp()

Get the result (computations on GPU are done here)
a_i = K_ij.sum(dim=1) # Genuine torch.cuda.FloatTensor
a_i.shape = (1le6, 1)

KeOps supports autograd!
g x = torch.autograd.grad((a_i =+ 2).sum(), [x])
26

Example in R

formula = "Sum_Reduction(Exp(lambda*SqNorm2(x-y))+beta, 1)"
args = c("x=vi(3)", "y=Vj(3)", "beta=Vj(3)", "lambda=Pm(1)")

op <- keops_kernel(formula, args) # compilation

data and paramters

nx = 1000

ny = 1500

x <- matrix(runif(nx=*3), ncol=nx)

y <- matrix(runif(ny=3), ncol=ny)
beta <- matrix(runif(ny*3), ncol=ny)
lambda <- as.matrix(5)

computation
res <- op(args=list(x, y, beta, lambda), nx=ncol(x), ny=ncol(y))
27

Example in R

- beta version

- Gradient computation not available for the moment

- Specific branch rkeops

git clone https://github.com/getkeops/keops
git checkout rkeops

- See rkeops/REAMD.md for install instructions

27

More features (not presented today)

- PyKeOps (Numpy), KeOpsLab: formula gradient computation

- PyKeOps (PyTorch): automatic differentiation engine (compatible with
PyTorch autograd)

+ In the near future

- gradient computation and lazy evaluation in Rkeops

- possible to add new generic operations upon request (responsive user support
via Github issues)

- and more...

28

Conclusion

Take-home message

KeOps:
Seamless Kernel Operations...

— write formulas with simple matrix operations (Python, Matlab, R)
..on GPU...

— fast computations
..with auto-differentiation...

— automatic gradient computation
..and without memory overflows

— implementation with tiling for efficient memory usage on GPU

29

Thank you for you attention

Questions?

http://www.kernel-operations.io/keops/index.html

https://github.com/getkeops/keops

http://www.kernel-operations.io/keops/index.html
https://github.com/getkeops/keops

	Introduction
	Matrix reduction and kernel operations
	Computation on GPU
	Architecture
	A first example
	Performances

	Implementation
	Coding generic formulas

	Using KeOps
	Conclusion

